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In electron transfer  reaction between the oxidized

form of A and the reduced form of B ,

A + B  + A + Box red red ox

there is the “diabatic ” potential surface formed from the

electronically—uncoupled reactants and environment and the

diabatic surface formed from the electronically-uncoupled

products and environment. The electronic interaction between

A and B introduces new surfaces--the adiabatic potential energy

surfaces, discussed for example by the principal investigator

in Ann. Rev. Phys. Chem., 15, 155 (1964). It is desirable to

develop a numerical method to treat the dynamics of molecular

motion on those surfaces, to calculate the reaction rate. In

the present Technical Report Dr. Babamov formulates such a

method. In practice, to reduce the num ber of quantum states

needed in the computation one would need to simplify the actual

many-dimensional problem before applying the method. One such

application has been made by Drs. Babamov and DiGiacomo of

this laboratory.

R. A. Marcus
Principal Investigator
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\\ ABSTRACT

A new method for solving the coupled equations in the adiabatic

representat ion which arise In quantum mechanica l t reatment of atomic and

,t~ lecular collisions Is developed. The solut ions of the uncoupled

I adiabatic equations, obtained from the coupled equations In the adiabatic

representation by neglecting the coupling tern~, are used to derive a set

of new exact equat ions for the purely Inelastic effects of the collision.

The solut ions of the new equations are practical ly nonoscilla tory end

can be solved numerically with little computational effort.
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I. INTRODUCTION
.

The computational wave mechanical treatment of inelastic atomic and mol e-

cular collisi ons is frequently reduced to solving a set of coupl ed ord i nary

linear differential equations. ~~ The coupled ord inary differential equations

are obtained by expanding the sol ut ion of the time-independent Schrod i nger

equation for the system in a product basis set consisting of kna~n wavefunc—

tions for the internal mot ion and for the angular relative mot ion, multipl ied

by unkn~ rn coefficients which depend on the relative radial motion coord i nate.

The choice of the basis set functions for the internal mot ion determines

the structure of the resulting coupled equations. When the wavefunctions for

the internal mot ion of the separated particles are used in the basis set the

coupled equations are said to be In the diabatic representat ion. On the

other hand when the sol utions of the Schrodlnger equation for the colliding

pair at each fixed intsrpsrtlcle distance are used in the expans ion, the resulting

equations are In the adiabatic representation. 3—6

The coupled equations in the diabatic representation are used often

in the treatment of vibrat lonally and rotationally inelastic mol ecular

col lisions occurring on a single electronic potential energy surface.7’’

Develop ing methods for sol v ing the coupled equations in the diabetic repre-

sentat ion has thereby received considerable attention, par ti cularly in the

past decade, and a ni.miber of highly efficien t methods for solving them have

been developed.’’°
The equat ions in th~ ad iabat ic representat ion are frequently

encountered when a rigorous treatment o~ an electronically nonadlabatic atomic

collision is attempted. ’”” They have a somewhat more complex mathematical

structure end develop ing methods for solving them has received relatively

li ttl, attent ion in the l iterature.13 ’1’ The most widely used of the new~~
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efficient methods for solving the equations in the diabatic represen-

tation have not been adapted for solving the adiabat ic equations. Although

a direct numerical integration of the equations in the adiabatic representation

Is possible and has been conducted for some model probl ems’3 ’’’ the onl y method
used has been direct numerical integration of the coupled equations based

on a pol ynomial approximation to the wavefunction . The inelastic atomic

collisions have in practice usually been treated instead by solving a set of

d iabatic equations constructed in some approx imate manner,’5 or still more

approx imately by solving the corresponding so—cal led classical path equations. 16

The latter equations are obta ined by treating the electronic motion quantum

mechanically and the relative motion of the atoms classically.

In this paper a stable and efficient method for solving a set of coupled

ordinary differential equat ions in the adiabatic representation Is outlined.

The method can be used for treating electronic transitions and charge trans-

fer in atomic collisions , which can be ri gorously formulated In the adia-

batic representation~
3’t’ The electronic transitions in mol ecular collisions ‘

can also be treated by the present method since they are also conveniently

formulated in the adiabatic representation . 13

Both the spatial extens ion of the coupt i ng reg ion ’7 and the number of

coupled states 1’ are smaller in the adiabat ic representation than in the

diabatic one. Since the equations in the diabatic representation and the

equations in any other representation in which both diabatic and adiabatic

coupling elements appear can be stra ightforward ly converted i nto a pure

adiabatic representation3’5 the present method could also be used in cases

• when a diabet ic or some other representation is mos t convenient for init ial

formulation of the problem.

-4
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The Hami ltonian for the system and the usual quantum mechanical coupl ed

equations are give n in Sec. II. The structure and the syn~etry properties of

the coup led equations are analyzed in the Appendix.

The sol ution of the coupl ed equations is performed In three stages. First ,

a set of uncoupl ed second order differential equatIons, obta i ned from the

equations in the adiabatic representation by neglecting the coupling matrix

elements, is solved us i ng one of the standa rd methods in the l iterature.

The sol utions of these uncoupl ed equations are then used in Sec. III to

convert the equations in the adiabatic representation into a set of new

first—order coupled differential equations by means of a variation of con-

stant type of treatment. The dependent variables in these new equations are

typ ical ly much more slowl y varying than the orig inal ones. The resulting

first—order equations (Eq. 3.14) can then be solved using one of the standard

methods to eva l uate the scattering matr ix elements.

The method is illustrated in Sec. IV using as an example the evalu-

ation of inelastic transition probabilities for a He+ + Ne collision in

the two—state approximation. The model probl em used has been treated

previsoul y by other methods, and so the feasibility of the present treat-

ment can be verified .
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II. THE COUPLED EQUATIONS

The Schrodinger equat ion for a system of two coi l iding particles which

hav~ internal structure Is given in reduced units by:

- 

~ + v(r ,R)1 ~~ I 
(2.1)

where the vector R is defined by its magnitude R and the two angles describing

its orientation denoted col lectively by fl; R denotes the relative position

of the centers of mass of the two partic les. The vector r denotes all

internal coordinates. The sum ~~ 2 Is over all the internal coordinates.
r

The sol ution of the time—Independent Schrod i nger equation with the

Ham iltOfliafl (2.1) can be expanded in a product basis set consisting of a

set of known wavefunctions r,r~;R) which depend on r and ~~
for every val ue

12a
of R, mult i pl ied by R—dependent coefficients:

y = z ~1(R) ~ 
(L,~~;R) 

(2.2)

It is also convenient to choose as a set of real functions.

Substitut i ng (2.2) Into the Schrod i nger equation and integrating over r

and fl a set of coupled ordinary differential equations for the radial

coefficient wavefunctions $ 1(R) is obtained.3’”1’

P2$i~
Z (2P

ij Psj+Bijsj+V ij sjl E$ 1 (2. 3)

where

P —1~~I~R , = (X iIPIXj)’ B1~ — (Xi IP’lXj) 
(2.4.)

•nô •

V 1~ 
V~1 — (~1IH’lx~) 

• 

(2.4b)
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H’ contains the entire potential pl us the kinetic energy terms for

the internal coordinates r and for the orientational coordinates ç~. If a

rotating •c~~rdinate system is used H’ also contains all the terms steming

from the rotation of the coordinate system. $2 The brackets ( ) denote

integ ration over £ and ()

Eq. (2.3) can be written compactly In matri x notation :

lIp 2 + 2Pp+B +v ]  $ =  E$ (2.5)

where $ is a col umn vector with elements and P, B, and V are square

matrices wIth elements g iven by (2.4), while the symbol I denotes unIt matrix.

Appl y ing p to the scalar product of two xi ’s, and noting that

equals one has

o = ~ ~Xi 1x~ = — (~~ , lXj ) ~~ <~ i = _p
~ I + (2. 6)

Thus,P is a hermltian matrix. If the basis set is complete the matrix B

can be expres sed in terms of the matrix P end Its derivative 3

= p’ + (pp), (2.7)

where the operator p is not cons idered to act beyond the cl ose of the paren-
theses, and the elements of p2 are obtained from those of P by matrix multI-
pl ication. Using (2:7) the coupl ed equations (2.5) become

(2.8)

I — Ip’ + 2Pp + (pp) + P’ = (Ip + p)2 (2.9)

It Is in practice easier to evalua te pP and p’ in (2.9) than the B in (2.5) and (2.4)

sinc e •va luat ion of B requ i res numerical evaluation of second derivatives

of

Eq. (2. B) is a set of ordinary dlffsrentl*l equations, usually an infini te

set , and is a p artly Integrated form of the Schrodinger •quation , fully

•quiv elent to (2.1). Th. matrix operator on the l.h.s. of (2.8) then represents



6

I the Hamilton ian operator H f rom (2.1) as appl ied to the space of coefficient

wavefunctions s~(R). The matrix operator I in (2.9) arises from the

radial part of the kinetic energy operator in (2.1) end can be viewed as

the radial kinetic energy part of the matrIx Hamiltonian operator.

The matrix V represents an effective matrix potential for the radial

motion. I

It is convenient for simplify i ng the following discussion to consider

instead of.Eq. (2.8), which invol ves the vector $,the following matrix

equation :

+ 2~p + (pr) + p 2 + = E.~ (2. 10)

where 
~ 
denotes an n by n square matrix which contains as col umns n linearly

independent vector sol ut ions $ of (2.8).

The matrix V in (2.10) can be rewritten as

— + ~1nt — 6 iJ ~~ + 2 i (L i + l )1R 2)  (2.11)

where c~ is the elgenva l ue of the interna l (ç-dependent) part of the basis

function ~1, and L~ is the angular momentum associated with the angular ~
dependent) part of the x1. In the limit of large R the adiabatic coupling

matrix ~ and the potential couplIng matrix vanish and the coupled

equations (2.11) can be written as a set of uncoupled equations

(~p
2 + X°)~ 

— E~~; (2.12)

the diagona l angular terms L1 (L
1+l)/R

2, whIch also van i sh for lar ge R,have been

retai ned in (2.12) to sim~l if y the structure of the phases in the scattering

matrix. The solution of (2.12), which for large R is equivalent to (2.11) is

• given in terms of Riccati-Bessel functions and can be written for large R us i ng

the assymptot ic form of the RiFcatl-Bessel functions as: 0
•

. • I . . — - -  - ‘• . . .

~ (R) — r’(R)r + r(R)~~
,. (R ... .

~ 
• . (2i13)
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where P± are dIagonal matrices with elements

= (l/2k~)1/2 exp[+I(k.R—L~w/Z) (2.1 4)

i.e. F~ and F~ are the diagonal elements of the two l inearl y-independent

~asymptotic sol utions of (2.1 4). The factor (1/2)1/2 has been inserted to

normal ize them to a Wronskian, F~ 1F~ 1 —~~1F 1, equal to —I , where the dot

denotes d/dR. The C±~ In (2.1 3) are integra t ion constant matrices. The

choice of the phases in (2.14) is a matter of convention ; different

phases will bern used in Sec. 3 to define the purely inelastic scattering

matrix.

The scattering matrix (S—matrix) is usually introduced as the matrix

— 

that converts C in (2.1 3) into

(2.15)

The choice of the basis set X1(r,~ ) in (2.2) determines the structure

of the matrices in (2.10). Two particular choices for which the structure

of (2.10) is qualitatively simplified are of practical interest. If the basis

set is chosen to be the set of elgenfunctions of the Interna l orlentationa l part

of the Ham Il ton lan for . lar ge .R the matrix e vanishes identically (due to the lack

of dependence of the basis set on R) and all the coupl i ng in the d i fferen ti al

equation is contained in the effective potential energy matrix V. Such basis

se t is a diabetic basis set and the resulting set of coupled equat ions i s

In the diabetic repre sei tation .’

The coupl ed equations in the diabat ic representation are of the form

(‘p’ +~~)j — E~ (2. 1~) 
•
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• If the basis set Is chosen instead to be the set of eigenfunctfon s of the

interna l —orientat iona l part of the Hamiltonian , i.e.,of ~~~~~~~~ R, tbe off—diagona l ,

elements of V(2.4b) vanish ident ically , sc that all the coupling is dynamic , and

Itis conta i ned in the kinetic energy part of the Hami lton ian. The diagona l

elements of V then obey the well known non—crossing ~~~~~~~~ i. e., they cannot

cross at any R unless the matrix element of P that couples them vanishes .

In the adiabatic representation , the equations are of form:

- 

f’p2 + 2pp + (pp) p2 + V )
~ = (2.1 7)

where V is a dIagonal matrix with elements.

V 1~ 
= (2.18)

and is the l—th el genval ue of H’ for a g iven R. All the coupling is conta i ned

In the kinetic energy matrix , wh i ch in turn is given in terms of the adiabatic

coupling matrix ~ .

It should be noted that In some cases (e.g., when the angular coupling is

not negligible) the eigenfunctions of the lnterna l —orientationa i part of the

Hamlitonlan Ht for every R may be difficult to eva l uate directly. In such

cases us i ng an approximation to the adiabatic basis set (e.g., product of

eigenf unctions of the internal part of H multiplied by spherica l harmonics)

~~uId lead to nonzero of—diagona l elements in ~ and the coupled equations (2.10)

will not be in the adiabatic representation. The coupled equations can then

be converted to the adlabatic representation by diagonal izing the potential

energy matrix at every R, and transforming the kinetic energy matrix

accord i ngly. The same can be done when the diabetic representation can be

formulated and it is easier to set up. The transformation matrices needed

to convert the equations between the adiabatic , diabatic and any other genera l

-
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representation are given in the appendix. A rigorous discussion of the

sylTrletry properties of the coupled equations is also given in the appendix.

Once a set of equations in the adiabatic representation has been con-

structed , either directly or by transforming the equations in some other

representation the method described in the next section can be used to con-

struct their solution .
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III. EQUATIONS FOR THE AMPLITUDE COEFFICIENTS

Using Eq. (2.9), Eq. (2.10) can be rewritten as

(ip + p)2 
~~ 

= = (E—v jj)6ij. (3.1)

For most atomic collisions the elements of the coupl ing radial momentum

matrix ~ in (2.10) are small throughout the collis ion range. In such

cases a good approximation to the sol ut ion of (3.1) can be obta ined

by neglecting the coupl ing matrix P and solving the resulting set .of uncoupl ed

second order differential equations.

‘p2
~ 

_
~ 7

2~ (3.2)

Equation (3.2) can be solved numerically more easily than (3.1);

some good analytic approximations also exIst.2 ° Approximat ing the solu-

tion of (3.1) by a solution of (3.2) is for a system of two atoms essent iall y,

the Born-Oppenheimer approx imatIon.’’ It corresponds physicall y to the neg lect

of the effect of the relative atomic motion ~n the electronic states of the

system. For slow atomic collisions the Born-Oppenheimer approximation is

usually already a very good one except for one important specIal case: If

two or more matrix elements of the diagona l matrix V are nearly degenerate

for some va lues of the radial coord i nate R the correspondIng matrix elements

In the matrix ~ become often large In the same region and cannot be neglected

any more. The occurrence of such avoided crossing of the diagona l matrix

e lements of the matri x as a funct ion of the radial coordinate Is the main

reason for electronic transitions In sl ow atomic collisions. The breakdown of

the Born—Oppenheimer approximation In this case is localized to a relatively

narrow spatial reg ion around the avoide d crossing ; Eg. (3.2) Is however,

stil l an excellent approximatIon to (3.1) outsIde the avoided crossing region.
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The sol ution of (3.1) subject to a given initia l condition at small R

can be factored at any point into the sol ution of (3.2) subJ ect to the same

initial condition and a set of additiona l correction factors which reflec t

the nonvanishing of the matrIx P.

The main features and the typ ical oscillatory structure of the sol ution

• of (3.1) are already contained in the sol ution of (3.2). The additional

correction factors vary more slowl y with R than the sol ution of (3.1) itself

and are practically constant outside the reg ion where the matrix P is large.

In the remai nder of this section the differential equations for the above

correction factors are derived.

Any sol ution of each of the uncoupled equations

2 p

~~~ii Y T ; i~~~i

can be written as a linear combi nation of two linearly- i ndependent sol utions

of (3.3) denoted by U~ 1 and

= Lr~c~1 + . (3.4)

The t w o  l i n e a r l y  i n d e p e n d e n t  sol utions of (3. 3) , U~ and

Uj11 will be taken to be the sol utions with the asymptotic form

[l/(2k1
)t/2]exp [~l(k1R ~ i)] 

. (3. 5)
and

which are complex conjugates of each otherAhave been normal ized in such a

way that their Wronsklan, I4~U7~ — u1,u7 1, Is equal to — ; .

The general solution of (3.2) can then be written in form of a linea r

combina t ion of the two sol utions U~ and U.

(3. 6)
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• The only nonvanishing elements of the matrice s are the diagona l

ones def i ned by (3.5), while the C~ are diagonal constant matrices.

One seeks now a sol ut i on to the coupled adiabatic equations (3.1)

k~ terms of the sol utions of (3. 2) U4 and if,

= u~4(R) + u~~(R) . (3 7)

with the coefficients be i ng functions of R. Since the matrice s LJ~ are

diagona),the elements of $ are given by

- 

$i.i 
= 

~~~~~~~~~~ 
+ ujia.jj(R). (3.8)

Since there are twice as many ~~ In (3.7) as there are wave func-

tions from which the can be determined , one Is free to impose n2

constraints in form of n2 algebraic or differential relations between the

where n is the size of the matrices in (3.1). While the n2 constraints

are completel y arbItrary at this point, the choice of the constraint will

effect the ease with which the resulting equations will be solved. The most

slowl y chang ing coefficients resul t from a constraint that makes the

come closest to being an average of the absolute value of tI-.e rap idly oscil-

lating wavefunction sol ut ions of the coupl ed equations. In the classical

limi t, when the period of oscillations of the wavefunctions goes to zero the

become a measure of the probability of finding the particle in the

channel I. for a system initially in channel J, since if one integrates the

absolute square of the wavefunction in a small region the val ue will be propor-

tional to the value of the absol ute value square of the much smoother func ti ons
+• ~Ty

Comparing (3.1) and (3. 2) It can be seen that applying the operator

F = (Ip+P) twice to the solution of (3.1) has the same effect as appl y ing the

operator p twice to the sol ikions of (3. 2). Th. operator ~ ‘,
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= (L~1)2 , (3. 9)
S

when app l ied on the sol ut ions of (3.2) thus acts effectively only on the

elas ti c par t of the sol uti on , given by the sol utions of (3.3 ), U±,but not

on the additiona l factors, ~~~

+ J~~ = (p2U4)c~ + (p2U )~~ 
(3.10)

Defining the operator F=(Lp+e) itself in an analogous way would then yiel d

the equations for separating the elastic and Inelastic effects as first

order differential equations. The operator F with such properties , which can

be called an adiabatic momentum operator, can be fo rma l l y defined by

n n
n=l ,2

(3.11)

m i
~tPg ) = 0. n=0,l

Apply ing this E twice to g~, y iel ds the same result as apply ing the F~ given

by (3.9). From (3.11) one finds

• U4p~~ + U p ~~ ~ ~(u
4
~
4 + ~~

-) = 0 (3.12)

The above constraint Is clearly not the usua l variation of constant con-

straint ~~~~ (namely tha t W
4. 
P + ~~~~ equals zero).

Using (3.12) and (3.2), Eq. (3.1) can be reduced to a set of first

order differential equations for the -.~~.
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~i ~~

- -~ir ~ ~ ~i~if r I I = I  II H I I I  (3.13)

L~J ~ ~J Lo ,~J ~ ~J Li
Sinc e the coupl ed equations (3.13) have real coefficients a purely real

s~t of sol utions can be constructed. Since a sol ut i on post-muitipi led by a

constant matrix is also a sol ut ion of (3.13) the two real matrix sol ut i ons

can be used to generate a sol ut ion with any desired boundary conditions ,

includ i ng the complex ones. Eq. (3.13) can then be reduced to an equation of

the same size with real coefficients,

lal ~~PA — BP~ BPB — BP~J a

d l i  I
~~~

. i ~i I (3.14)

[,~bJ EPA - APA APB - AP~J 
b

where

(l /2 )t/2 (B. IA) a~ (1/2)~
’
~ (b Ia) (3. 15)

and the matrix p (purely imag inary for a real basis set X) Is def i ned in (2.4).

The above equations are convenient for numerica l work since their inte-

gratlon requires real arithmetic only.
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IV. A NUMERICAL EXAMPLE — TRANSITION PROBABILITIES

AfID THE SCATTERING WAVEFUNCTION FOR AN ATOM-ION COLLISION

In this section a numerical sol ut i on of the Eq. (3.14) derived

in Sec. II is presented. The transition probabilitie s and the

scattering wevefunction are evaluated for an atom—ion colli slon

In the two—state approximation.

The physical system chosen is the excitation collision

He4 + Ne(2p6) He4 + Ne (2p~3s) (4.1)

at collision energy of 70.9 e.v. (2.60566 Hartrees). The above inelastic

process has been studied extensivel y in the past decade, both computational —

1y 15.2~~U, and experimentally . 2~~~3l Themain features of the experimental

results can be explained by a two-state curve crossing model In which the

coupling results from the radial part of the Hamilton lan onl y, so that the

angular momentum is preserved througt~
’ the collision. The coupled equations

in the diabetic repre~.entation wh.ich describe mathematically the process

with the above approximations can be written as~~

{1’ :]÷ [:; ~
]} [:;: :‘~ ~ £ [‘ ,,~ 

(4.2)

The potential matrix element s used are those of ref. 15.
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Eq. (4.2) can be converted Into two coupled equations In the

adiabatIc representation by solving the algebraic problem of dlagona l iza-

t ion of th e mat r i x ~, which for two states can be performed ana lyt i call y.

The transformation matrix is given by (A 7) and the resulting set of

adiabatic equat ions can be written in matrix form as

1i~ 
p~~~~2 

fW I, oil ~ $121 Jj’’ ~U2~

t~~
2 P 

+ wJJ L~2 $2 2] 

= E L~2 1 $2 1] 
(4.3)

where

= .~
. (V ,1 + v ,2) + [(V 1 —V12)2/4 + v12 2] 1/2 (4 4)

and

P ,1 I(dt/dR)h/2/(I÷t2~ t = (V22—V ,,)/2V ,2 (4.5)

The method from Sec. 2 can now be applied to (4.3) direct ly. The

correspondi ng uncoupled adiabatic equations are give n by

r~
2 01 rw ,, 1 10’’ 0,2 1 ro’’ 0121

I + 1 1 I 1 E 1  1 (4 .6)
10 ~2J L0 W2J L02 1 Ø22J Loll ØZtJ

The solutions of (4.6) which are needed for solving (4.3) were constructed

numer ica l l y us in g Gordon’s method.’.32 Any des i red solution of (4.6) is

then written as

—
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.

Is,’ s~i IA, 01 F’’ a,21 ~ 01 rb,, b,~~
1 = 1  I I  1 + 1  I I I (4.~)L~’ ~ L° A2J ~ 2I aIr] S

f] • 
b22J

where Ai and 8~ are two linearl y independent real solutions of each .

(4.6): A 1 is the solution which decays exponentially in the classical l y

forbidden region and is g i ven by Am (l /2k1)
u12 cos (k 1 r 

—
~~~

) asympotlcall y

in the classically allowed reg ion. B1 is the other linearl y i ndependent

solution normalized to a unit Wronskian, which is given asympoticall y In

the ciassica il y allowed region as 8~u#(i/2kI
)l
~
2 sin (ki r 

—

The Initial conditions on the matrices ~ and b used in the cal culations are

F~’ 
a, J ~1 o~ 

- 

Ib,, b ,~~ 10 01

• ~=I I = 1 l~ ~=I I = 1  (4.8)
[a,, a 2.!1 Lo iJ Lb,, b22J [a oJ

The in tegrat ion of the equations was started it a val ue of the radial coor-

dinate low enough to obtain converging results for the transition probabilities

to three si gnificant fi gures. Starting the inelasti c integration at 0.1 a.u. to

the left of the outermost turning poInt was usuall y sufficient . The integ ra-

tion was stopped at a value of R R
f where the matrices ~ and ~ became

constant to the same accuracy. (-.5 a.u.,) The matrices ~~(R f) and ~~(R f) were

then constructed from the fi nal values of the matri ces ~ and k according

to (3.15) and an ine!astic scattering matrix 5’ was constructed 
-

2
’= (R

f)1~~(ii~j J P  
• 

(4., 9~

The conventional scattering matrix S can be obtained in terms of the ,nltrIx

S’by comparing their definitions (2.1~) end (4•9)• Since the reference

solutions Ff1(2,4) and 
~t1
(
~~
) differ by the elastic phas. shift

th. relat ion between S and 5’ Is given by
• ~~~~~~~ 

• 

(&.lO)

• _ _ _ _ _ __ _ _ _ _ _ _  • •~•_ _
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• where .
~ 

is a diagonal matrix with elements
S

= exp (in 1) (4.11)

— The numerical integration was performed by solving (3.14 ) using a

standard coupled differential equations integration subroutine.32 The

• results of the calculation and several angular momenta for total energy

of the collision of 70.9 e.v. (2.60566 A.IJ.) are given in the second col umn

of tabl e 1. The th i rd col umn numbers are from Ref. 28 and have been obtained

by solving the equivalent set of equations in the diabetic representation (4.2)

The elements of the first row of the matrices a and b as a function of R

- for the actua l i mposed initial condition In the numerica l integration ,

(Eq. (4.8)) are presented graphically on part b of Figure I. Those are the

quantities calculated as a function of R in the actua l numerica l integration and the

virtual absence of any oscillations or Instab ilities Is evident from the

figure.

The first row of the wavefunct ion on the i.h.s. of (4.6) as a function

of R In the vicinity of the “crossing point” Is presented graphically on

part c of the Figure. The hi ghl y oscillating wave functions shown here

are the quantities which would have to be foll owed numeri cally by the

integration rout ine if a solution of (4 .3) had been attempted direct l y

for the same initial condition . I

I -~~~
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The phys ically meaningful boundary condition on the matrices ~~ and

• at large R is that the matrix a (R f~ be a unit matrix. In that case,

the first and second rows of the matrices 
~ 

and ~~ for every R correspond

to the sol ution for which the part icle is incoming in the lower or upper

channel , respectively. The matrice s ~ and f correspond ing to such

• boundary conditions which will be denoted with c4.and c can be obta i ned by

post—multiplying the matrices ~ and ~~ for every R with the inverse of

the fina l va l ue of the matrix a namely tf(Rf)]’.

~t ~~~~~~~ (4 .12 )

The elements of the first row of the wavefunction 
~ 

correspond i ng to such

boundary condition can be obta ined at every R by pre—mu ltipl ying the matrices

c and c with the reference sol ution matrices LT~ and U as def i ned by (3.5),

respectlvely,and are shown on part d of the fi gure. 
I

a

-g
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V. DISCUSSION
S

The method for treating inelastic col l isions presented here is based

on an explicit separation of the elastic and inelastic effects of the col-

• lIsIon . It is shown that the oscillatory structure of the coupl ed equations ,

which Is one of the main sources of d1fficu lties~ in develop ing a sol ution

method, is almos t entirely due to elastic effects. The sol utions of the

elastic part of the problem , which can be obta i ned relatively easily, can

then be used to derive a set of equations for the purely inelastic effects.

The variables in the latter are a measure of the probability of find i ng the

particles in a g iven internal state at any point in the collision and the

vi rtua l absence of oscillations in their change with the interpart icle dis-

tance in the model problem treated here is evident from the numerical cal-

culations presented.

The present formalism can be shown to be the exact analog of some

semiclassical 3 4  and uniform semiclassic al ’7 treatments In the literature.

To obtain the latter one onl y needs to substitute the semiclassical or

uniform semiclassical approximation to the el astic wavefunct ion: the equa-

tions for the inelastic effects remain the same. In such a way the present

formalism offers a simp lelway of deriving the above approximations and

also allows one to express the fina l equations In simp le

form.

Introducing some additiona l classical limit approx imations , as shown

in ref. 34, reduces the present equations to the classica l path equations,

which forms a convenient framework for Intuitive interpretation of the variables

in the inelastic equations In terms of their classical limit behavior. A

more detailed discussion of , the semiclassical aspects of the problem is

given .Isewhers. ~. ~
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APPENDIX.

1. Transformations between the equations in different representations

The coupled equations (2.8, 2.9), rewritten here

(ip + p)2~ + — E~ (A.l)

can be converted into the adiabatic representatIon using the unitary

transformation ~ wh i ch diagonal izes the potential energy matrix V

IIVM ~
a CA.2)

to transform the solution matrix ~

— (A.3)

The tilde symbol above denotes a hermition conjugate matrix.

The transformed equations in the adiabatic representation are obta i ned by

substituting (A.2) and (A.3) in (A.i) and premultiplying the resulting

equation by ~, yielding

+ ~a)~a 
+ ~

a
~
a — E~

C (A.4)

where

— ~(~p + (A.5)

Similarl y, the coupled equations (A.l) can be converted Into the diabetic

representation by means of the uni tary transformati on which di agonal Izes the

kinetic energy part of the Hamiltonian

~ e)2~ — 1p2 (A.6)

A solution of the second order differential equation (A.6) is given by the

solution of the first order differential equation I

— (A.7)
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Eq. (A.7) gives a ri gorous definition of the diabetic representation

for the case of atomic coI l isb n probl ems where It cannot be easil y

def i ned ln terms of the asymptotic basis sets.3 However, since the trans-

formation or a set of equations in the adiabatic representation into the

diabat ic representation requires solving a coupled set of differential

equations (A .7), It is practically never used, 
-

The definition of the adiabatic and the diabetic representation given

in Sec. 2 Is based on the choice of the interna l—orientationa l basis set

that l eads to a particular representation. Alternatively, the adiabatic

representation has been def i ned3 by the vanishing of the off—diagonal elements

of the matr ix V. and the diabetic one by the vanishing of the diagonal

elements of P In (2. 9). When the basis set X is complete the two alternative

definitions are identical. 5’35 When the basis set used to derive the equa-

tions Is not complete they are however different. The “adiabatic” set of

equations obta ined by diagonal Izing the potential matrix In a finite diabetic

set of equations corresponds to using an approximate expansion of the ei gen-

functions of the internal part of the hamiltonian at every R in terms of

the asymptot ic internal states. The “diabatic” set of equations obta i ned

by diagonaliz ing the kinetic energy matrix operator in a finite adiabat ic

set of equations similarly corresponds to equations obtained by using an

approximation to the asymptotic internal wavefunctbons in terms of the l ocal

elgenfunctions of the internal hamiltonian at every R, and it is weakly

dependent on R.

2. Syivwnetry Properties of the Coupled Equations

Eq. (2. 8 )  is a seif—a djoint second order matrix differential equa-

tlon in the sense that the hermitlen conjugate of the sol ution Is an inte-

grating factor for the equation and can be used to reduce its order by one.3’
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Premulti ply ing (2.11) by the hermit ian conjugate of the sol ution , taking the

hermltian conjugate of the matrices on both sides , and subtracting one gets

- (p~~)~ + 2[’~Pp4~ + (p~)~~ +~~(pP)j~] = 0 (A.8)

w~ere the explicit form of I (2.9) has been used.
Rearrang ing, (A.8) can be wri t ten as

- (p~)~ + 2(:~~~)] = pf(~~,~~) = 
• 

(A .9)

or integrating both sides , after tubstituting p — i(d/dR)

p ~ - (p~)~ + 2(1~4) = F(~~$) = const (A. 10)

Hence, the hermitian conjugate of the sol ution of (2. 11 ) Is en integrating

factor for the same equat ion and the equation is sel f—adjoint . Equation

(A.l0) can be viewed as the analog of the flux conservation relation for

the Schrodinger equation. It can be obtained from the f l u x  conservation

relation for the Schrod i nger equation simp ly by substitut i ng the basis

set expans i on for the wavefunct ion and Integrating ova- the r,(1 dependence. ~

The value of the constant matrix F can be evaluated at R=0 where the wave-

function matr ix vanishes and It is zero.

The sel f—adjoint property of the coupled equations or their “Hermicity”

has been a point of some confusion in the literature . It was argued (c.f.

ref. 3, sec. 9) that the matrix 8 (2.7) is not hermit Ian and therefore

the coupled equations are not Hermitlan. While the matrix B does indeed

represent a non self—adjolnt term in (2. 9) the matrix operator Pp is also

not sel f adjoint. The ~asIest way to recognize this poi nt is to notice that 
~
p

is a product of two nonconr~ut Ing sel f adjoint matrix operators so that the

• whole Hamiltonlen matrix operator is self—adjoint , as one would expect.

-• I I ~~~~
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Table I: The Transition ProbabIlIties IS i zI2 for He + Ne He + Ne at colli sion

energy of 70.9 cv and different angular nomenta

Angula r Momentum I 

jSi2 I 2(this work) I5 2 12 ( ref. 28)
— 200 I 0.215 0.21 5

300 0.146 0.146

310 0.202 0.202

320 0. 0941 0.0941

330 0. 0226 0.0226

S



- Legend to Fi gure 1
S

The adiabatic potential energy matrix elements V
11 

and the coupl i ng matrix

elemen t P
~~ 

are shown in (a) as a function of the radial coordinate R.

The V 11. ~~ and E are in Hartrees, while P 17 /lO is in bohr~~. The first row

aelements of the matrices a, sol id line , and b, dashed line , obtained

by solving numerically (3.14) with the ini tial conditions (4.6) are shown In

(b). The wavefunct ion (4.5) for the same initial conditions is shown in

(c). The actual wevefunct ion, correspond i ng to no incom ing wave in the

upper channel is shown in (d), where the sol id line describes the real

pert and the dotted line the imag inary part of the wavefunction. In each

case (b) to (d),, the upper curve or curves refer to channel 2 (the more

hi ghl y internal l y excited channel), and the lower curve or curves refer

to channel 1. The structure of the adiabatic potential matrix elements

around the avoided crossing is shown in the insert on part a.
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